fbpx
  • saat 98f32
  • iata e9491
  • ADC dcc5b
  • scet 40b64
  • Media 261cc
  • SBM 5a9ca
  • shtm 777a4
  • degree2 35861
  • diploma2 2617b
  • skills 7e8e9

Histroy of Jet Engines

jetengine a1da9

Jet engines date back to the invention of the aeolipile before the first century AD. This device directed steam power through two nozzles to cause a sphere to spin rapidly on its axis. So far as is known, it did not supply mechanical power and the potential practical applications of this invention did not receive recognition. Instead, it was seen as a curiosity.

Jet propulsion only gained practical applications with the invention of the gunpowder-powered rocket by the Chinese in the 13th century as a type of firework, and gradually progressed to propel formidable weaponry. However, although very powerful, at reasonable flight speeds rockets are very inefficient and so jet propulsion technology stalled for hundreds of years.

The earliest attempts at airbreathing jet engines were hybrid designs in which an external power source first compressed air, which was then mixed with fuel and burned for jet thrust. In one such system, called a thermojet by Secondo Campini but more commonly, motorjet, the air was compressed by a fan driven by a conventional piston engine. Examples of this type of design were the Caproni Campini N.1, and the Japanese Tsu-11 engine intended to power Ohka kamikaze planes towards the end of World War II. None were entirely successful and the N.1 ended up being slower than the same design with a traditional engine and propeller combination.

Even before the start of World War II, engineers were beginning to realize that engines driving propellers were self-limiting in terms of the maximum performance which could be attained; the limit was due to issues related to propeller efficiency, which declined as blade tips approached the speed of sound. If aircraft performance were ever to increase beyond such a barrier, a way would have to be found to use a different propulsion mechanism. This was the motivation behind the development of the gas turbine engine, commonly called a "jet" engine.

The key to a practical jet engine was the gas turbine, used to extract energy from the engine itself to drive the compressor. The gas turbine was not an idea developed in the 1930s: the patent for a stationary turbine was granted to John Barber in England in 1791. The first gas turbine to successfully run self-sustaining was built in 1903 by Norwegian engineer Ægidius Elling.[3] Limitations in design and practical engineering and metallurgy prevented such engines reaching manufacture. The main problems were safety, reliability, weight and, especially, sustained operation.

The first patent for using a gas turbine to power an aircraft was filed in 1921 by Frenchman Maxime Guillaume. His engine was an axial-flow turbojet. Alan Arnold Griffith published An Aerodynamic Theory of Turbine Design in 1926 leading to experimental work at the RAE.

The Whittle W.2/700 engine flew in the Gloster E.28/39, the first British aircraft to fly with a turbojet engine, and the Gloster Meteor
In 1928, RAF College Cranwell cadet Frank Whittle formally submitted his ideas for a turbojet to his superiors. In October 1929 he developed his ideas further. On 16 January 1930 in England, Whittle submitted his first patent (granted in 1932). The patent showed a two-stage axial compressor feeding a single-sided centrifugal compressor. Practical axial compressors were made possible by ideas from A.A.Griffith in a seminal paper in 1926 ("An Aerodynamic Theory of Turbine Design"). Whittle would later concentrate on the simpler centrifugal compressor only, for a variety of practical reasons. Whittle had his first engine running in April 1937. It was liquid-fuelled, and included a self-contained fuel pump. Whittle's team experienced near-panic when the engine would not stop, accelerating even after the fuel was switched off. It turned out that fuel had leaked into the engine and accumulated in pools, so the engine would not stop until all the leaked fuel had burned off. Whittle was unable to interest the government in his invention, and development continued at a slow pace.

In 1935 Hans von Ohain started work on a similar design in Germany, initially unaware of Whittle's work.

Von Ohain's first device was strictly experimental and could run only under external power, but he was able to demonstrate the basic concept. Ohain was then introduced to Ernst Heinkel, one of the larger aircraft industrialists of the day, who immediately saw the promise of the design. Heinkel had recently purchased the Hirth engine company, and Ohain and his master machinist Max Hahn were set up there as a new division of the Hirth company. They had their first HeS 1 centrifugal engine running by September 1937. Unlike Whittle's design, Ohain used hydrogen as fuel, supplied under external pressure. Their subsequent designs culminated in the gasoline-fuelled HeS 3 of 1,100 lbf (5 kN), which was fitted to Heinkel's simple and compact He 178 airframe and flown by Erich Warsitz in the early morning of August 27, 1939, from Rostock-Marienehe aerodrome, an impressively short time for development. The He 178 was the world's first jet plane.

Austrian Anselm Franz of Junkers' engine division (Junkers Motoren or "Jumo") introduced the axial-flow compressor in their jet engine. Jumo was assigned the next engine number in the RLM 109-0xx numbering sequence for gas turbine aircraft powerplants, "004", and the result was the Jumo 004 engine. After many lesser technical difficulties were solved, mass production of this engine started in 1944 as a powerplant for the world's first jet-fighter aircraft, the Messerschmitt Me 262 (and later the world's first jet-bomber aircraft, the Arado Ar 234). A variety of reasons conspired to delay the engine's availability, causing the fighter to arrive too late to improve Germany's position in World War II. Nonetheless, it will be remembered as the first use of jet engines in service.

Meanwhile, in Britain the Gloster E28/39 had its maiden flight on 15 May 1941 and the Gloster Meteor finally entered service with the RAF in July 1944.

Following the end of the war the German jet aircraft and jet engines were extensively studied by the victorious allies and contributed to work on early Soviet and US jet fighters. The legacy of the axial-flow engine is seen in the fact that practically all jet engines on fixed-wing aircraft have had some inspiration from this design.

By the 1950s the jet engine was almost universal in combat aircraft, with the exception of cargo, liaison and other specialty types. By this point some of the British designs were already cleared for civilian use, and had appeared on early models like the de Havilland Comet and Avro Canada Jetliner. By the 1960s all large civilian aircraft were also jet powered, leaving the piston engine in low-cost niche roles such as cargo flights.

The efficiency of turbojet engines was still rather worse than piston engines, but by the 1970s, with the advent of high-bypass turbofan jet engines (an innovation not foreseen by the early commentators such as Edgar Buckingham, at high speeds and high altitudes that seemed absurd to them), fuel efficiency was about the same as the best piston and propeller engines. - wikipedia

divider 75d41

Tawaran Khas untuk lepasan SPM/STPM/STAM/Diploma/Matrikulasi/Asasi Sempena Ulang Tahun ke 20 ICYM

  1. Biasiswa Penginapan dan Pengangkutan bagi Program Diploma dan Ijazah
  2. Pembiayaan/Penajaan Penuh daripada PTPK bagi Program Sijil

Permohonan:

Langkah 1, Biasiswa - Klik Sini
Langkah 2Pilih Program

Foundation / Diploma Foundation In Information Technology Foundation In Management Diploma In Entrepreneurship Diploma In Marketing Diploma In Accountancy Diploma In Islamic Financial Planning Diploma In Culinary Arts Diploma In Hotel Management Diploma In Tourism Management Diploma In Animation Technology Diploma In Media Technology Diploma In Theatrical Arts And Technology Diploma In Multimedia Technology Diploma In Information Technology Diploma In Computer Networking Diploma In Cyber Security Diploma In Electrical Technology Diploma In Industrial Electronic Technology Diploma In Early Childhood Education Diploma In Guidance & Counseling Diploma In Aircraft Maintenance Technology Kerjasama Universiti Teknologi Malaysia Diploma In Technology Management (UTM) Diploma In Technology Management (Accounting) (UTM) Diploma In Computer Science (Information Technology) (UTM) Sarjana Muda Sains (Pembangunan Sumber Manusia) (UTM) Sarjana Muda Pengurusan (Pemasaran) (UTM) Sarjana Muda Sains Komputer (Perisian Grafik & Multimedia) (UTM) Sarjana Muda Sains Komputer (Rangkaian & Keselamatan) (UTM) Professional License Aircraft Maintenance License Technician (AML-T) DCAM-PT-66 CAT A1 Aircraft Maintenance License Engineer (AML-E) DCAM-PT-66 CAT B1-1 Sijil Kemahiran Malaysia (SKM) / Short Course Lukisan Pelan Senibina / Juruteknik Elektrik / Teknologi Automotif / Pembuatan Pastri Program Tajaan Ground Handling Management (GHM) PTPTN Bahagian Pengurusan Kemasukan Pelajar UPU KWSP YAYASAN PENERAJU UPEN PTPK TAPEM YAYASAN NEGERI ZAKAT MARA UNIVERSITI ISLAM ANTARABANGSA MALAYSIA (IIUM) UNIVERSITI KEBANGSAAN MALAYSIA (UKM) UNIVERSITI KEBANGSAAN MALAYSIA (UKM) UNIVERSITI MALAYA UNIVERSITI MALAYSIA KELANTAN (UMK) UNIVERSITI MALAYSIA PAHANG (UMP) UNIVERSITI MALAYSIA PERLIS (UNIMAP) UNIVERSITI MALAYSIA SABAH (UMS) UNIVERSITI MALAYSIA SARAWAK (UNIMAS) (KOTA SAMARAHAN) UNIVERSITI MALAYSIA TERENGGANU (UMT) UNIVERSITI PENDIDIKAN SULTAN IDRIS (UPSI) UNIVERSITI PERTAHANAN NASIONAL MALAYSIA UNIVERSITI PUTRA MALAYSIA (UPM) UNIVERSITI SAINS ISLAM MALAYSIA (USIM) UNIVERSITI SAINS MALAYSIA (USM) UNIVERSITI SULTAN ZAINAL ABIDIN (UNISZA) UNIVERSITI TEKNIKAL MALAYSIA MELAKA (UTEM) UNIVERSITI TEKNOLOGI MALAYSIA (UTM) UNIVERSITI TEKNOLOGI MARA UNIVERSITI TUN HUSSEIN ONN MALAYSIA (UTHM) UNIVERSITI UTARA MALAYSIA (UUM)

Print Email

Important !!!!

Important 0ffb9For easier communication in future. 

Don't forget to Check the box for "Also post on Facebook" 

Untitled df8ab

  • ong 65e06Throughout my studies in ICYM, I have encountered many challenges and obstacles. However, I was lucky enough to be given the opportunity to gain knowledge here and also to engage in co-curriculum activities organized by the college. For me, ICYM is the best choice. 

    Ong Wei Sin • Diploma in Marketing • Best Student

  • fadzlina c3e6cI think ICYM has done a great job, especially during my student’s life in campus. I like the multi-cultural environment in ICYM that depicts the feel of 1 Malaysia. During my studies in ICYM, I have became more confident, able to improve my skills and possessed the sense of believing my self. As a whole ICYM was able to overtime any locking. I will definitely introduce ICYM to my friends.

    Nor Fadzlina Mukhtar • Diploma in Network Technology  Best Student

  • asyrafabMy learning experience in ICYM was very good and interesting and I can learn a lot about animation technology. Lectures in ICYM are very experienced in this industry compared to other colleges. They taught us all the knowledge about animation so the that we can improve our experience in the animation industry today.

    Mohd Asyraf Abd Rahman • Diploma in Animation, Lead Animator, Les’ Copaque Production

  • leekamThere is always a motivating environment in ICYM drives me to success. Spending time together with lectures and friends enable us to learn our own mistakes. Learning experience has turned me into an all-rounded individual. It was an extraordinary experience for me.

    Lee Kam Shann • Diploma in Multimedia Technology Best Student

  • asyrafI am grateful to be given the opportunity to study in ICYM as I am able to increase my knowledge in Animation, theoretically and practically. ICYM is definitely the right choice for those who want to learn in the field of Animation because the college has provided the complete and conducive environment for learning as well as practical experiences. 

    Asyraf Abdullah • Diploma in Animation Technology ,Senior Render Artist & Technical Manager, Les’ Copaque Production

  • intanBecoming an ICYM graduate is a prestigious acknowledgement. I would like to thank all my lecturers for their dedications and self esteems, as well as having the reputation as honourable academicians and educators. I am really touched by their personality and professionalism shown. Thank you for guiding and transforming us for what we are today.

    Intan Safinas Haji Abdul Samat • Diploma in Media Technology Executive, Education & Training